Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Cell Death Dis ; 14(12): 821, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38092755

ABSTRACT

Glioblastoma (GBM) is the most frequent and lethal brain tumor, whose therapeutic outcome - only partially effective with current schemes - places this disease among the unmet medical needs, and effective therapeutic approaches are urgently required. In our attempts to identify repositionable drugs in glioblastoma therapy, we identified the neuroleptic drug chlorpromazine (CPZ) as a very promising compound. Here we aimed to further unveil the mode of action of this drug. We performed a supervised recognition of the signal transduction pathways potentially influenced by CPZ via Reverse-Phase Protein microArrays (RPPA) and carried out an Activity-Based Protein Profiling (ABPP) followed by Mass Spectrometry (MS) analysis to possibly identify cellular factors targeted by the drug. Indeed, the glycolytic enzyme PKM2 was identified as one of the major targets of CPZ. Furthermore, using the Seahorse platform, we analyzed the bioenergetics changes induced by the drug. Consistent with the ability of CPZ to target PKM2, we detected relevant changes in GBM energy metabolism, possibly attributable to the drug's ability to inhibit the oncogenic properties of PKM2. RPE-1 non-cancer neuroepithelial cells appeared less responsive to the drug. PKM2 silencing reduced the effects of CPZ. 3D modeling showed that CPZ interacts with PKM2 tetramer in the same region involved in binding other known activators. The effect of CPZ can be epitomized as an inhibition of the Warburg effect and thus malignancy in GBM cells, while sparing RPE-1 cells. These preclinical data enforce the rationale that allowed us to investigate the role of CPZ in GBM treatment in a recent multicenter Phase II clinical trial.


Subject(s)
Glioblastoma , Humans , Glioblastoma/pathology , Chlorpromazine/pharmacology , Chlorpromazine/therapeutic use , Pyruvate Kinase/metabolism , Cell Line, Tumor , Energy Metabolism
2.
Int J Cancer ; 153(5): 1080-1095, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37293858

ABSTRACT

BRAFV600 mutations are the most common oncogenic alterations in melanoma cells, supporting proliferation, invasion, metastasis and immune evasion. In patients, these aberrantly activated cellular pathways are inhibited by BRAFi whose potent antitumor effect and therapeutic potential are dampened by the development of resistance. Here, by using primary melanoma cell lines, generated from lymph node lesions of metastatic patients, we show that the combination of two FDA-approved drugs, the histone deacetylate inhibitor (HDCAi) romidepsin and the immunomodulatory agent IFN-α2b, reduces melanoma proliferation, long-term survival and invasiveness and overcomes acquired resistance to the BRAFi vemurafenib (VEM). Targeted resequencing revealed that each VEM-resistant melanoma cell line and the parental counterpart are characterized by a distinctive and similar genetic fingerprint, shaping the differential and specific antitumor modulation of MAPK/AKT pathways by combined drug treatment. By using RNA-sequencing and functional in vitro assays, we further report that romidepsin-IFN-α2b treatment restores epigenetically silenced immune signals, modulates MITF and AXL expression and induces both apoptosis and necroptosis in sensitive and VEM-resistant primary melanoma cells. Moreover, the immunogenic potential of drug-treated VEM-resistant melanoma cells results significantly enhanced, given the increased phagocytosis rate of these cells by dendritic cells, which in turn exhibit also a selective down-modulation of the immune checkpoint TIM-3. Overall, our results provide evidence that combined epigenetic-immune drugs can overcome VEM resistance of primary melanoma cells by oncogenic and immune pathways reprogramming, and pave the way for rapidly exploiting this combination to improve BRAFi-resistant metastatic melanoma treatment, also via reinforcement of immune checkpoint inhibitor therapy.


Subject(s)
Interferon Type I , Melanoma , Humans , Vemurafenib/pharmacology , Vemurafenib/therapeutic use , Drug Resistance, Neoplasm , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Cell Line, Tumor
3.
Cells ; 12(7)2023 03 30.
Article in English | MEDLINE | ID: mdl-37048121

ABSTRACT

Dynamic reciprocity between cellular components of the tumor microenvironment and tumor cells occurs primarily through the interaction of soluble signals, i.e., cytokines produced by stromal cells to support cancer initiation and progression by regulating cell survival, differentiation and immune cell functionality, as well as cell migration and death. In the present study, we focused on the analysis of the functional response of non-small cell lung cancer cell lines elicited by the treatment with some crucial stromal factors which, at least in part, mimic the stimulus exerted in vivo on tumor cells by microenvironmental components. Our molecular and functional results highlight the role played by the autophagic machinery in the cellular response in terms of the invasive capacity, stemness and drug resistance of two non-small lung cancer cell lines treated with stromal cytokines, also highlighting the emerging role of the YAP pathway in the mutual and dynamic crosstalk between tumor cells and tumor microenvironment elements. The results of this study provide new insights into the YAP-mediated autophagic mechanism elicited by microenvironmental cytokines on non-small cell lung cancer cell lines and may suggest new potential strategies for future cancer therapeutic interventions.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Tumor Microenvironment , Cytokines , Cell Line, Tumor , Autophagy , Drug Resistance
4.
Eur J Pharmacol ; 948: 175700, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37001579

ABSTRACT

Downregulation of cell surface ß-adrenergic receptors (ß-AR) is an important adaptive response that prevents deleterious effects of receptor overstimulation. Various factors including reactive oxygen species cause ß-AR downregulation. In this study, we evaluated the effects of ligands of the peripheral benzodiazepine receptor (PBR), a key protein in regulating oxidative stress, on surface density of endogenous ß1-and ß2-ARs in highly differentiated cells such as human monocytes, which express both ß-AR subtypes. ß-AR expression in human monocytes was evaluated by flow cytometry, qPCR and western blotting. Monocyte treatment with ß-AR agonist isoproterenol did not change surface ß1-AR density while downregulating surface ß2-AR density. This effect was antagonized by the ß-blocker propranolol. An opposite response was observed with benzodiazepine diazepam that led to a time-dependent reduction in ß1-AR density. In particular, while no significant downregulation was observed after 3 h of treatment, only 63% of ß1-ARs were still present on the cell surface after 48 h of treatment with diazepam at 1 µM. Treatment with the PBR antagonist PK11195, but not with propranolol, antagonized the effects of diazepam. No change in ß1-AR-mRNA or protein levels was observed at any time after diazepam treatment. We also found that diazepam did not affect Gs-protein or ß-arrestin-2 recruitment for both ß-ARs in engineered fibroblasts, further suggesting that diazepam activity on ß1-AR density is mediated by PBR. Finally, no sex-related differences were found. Collectively, these results indicate that monocyte ß1-ARs are resistant to catecholamine-mediated downregulation and suggest that PBR plays an important role in regulating ß1-AR density.


Subject(s)
Monocytes , Propranolol , Humans , Monocytes/metabolism , Propranolol/pharmacology , Benzodiazepines , Diazepam/pharmacology , Receptors, Adrenergic, beta-2/metabolism , Receptors, Adrenergic, beta-1/genetics , Receptors, Adrenergic, beta-1/metabolism
5.
Traffic ; 24(2): 76-94, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36519961

ABSTRACT

Caveolin-1 (Cav-1) is a fundamental constituent of caveolae, whose functionality and structure are strictly dependent on cholesterol. In this work the U18666A inhibitor was used to study the role of cholesterol transport in the endosomal degradative-secretory system in a metastatic human melanoma cell line (WM266-4). We found that U18666A induces a shift of Cav-1 from the plasma membrane to the endolysosomal compartment, which is involved, through Multi Vesicular Bodies (MVBs), in the formation and release of small extracellular vesicles (sEVs). Moreover, this inhibitor induces an increase in the production of sEVs with chemical-physical characteristics similar to control sEVs but with a different protein composition (lower expression of Cav-1 and increase of LC3II) and reduced transfer capacity on target cells. Furthermore, we determined that U18666A affects mitochondrial function and also cancer cell aggressive features, such as migration and invasion. Taken together, these results indicate that the blockage of cholesterol transport, determining the internalization of Cav-1, may modify sEVs secretory pathways through an increased fusion between autophagosomes and MVBs to form amphisome, which in turn fuses with the plasma membrane releasing a heterogeneous population of sEVs to maintain homeostasis and ensure correct cellular functionality.


Subject(s)
Extracellular Vesicles , Melanoma , Humans , Caveolin 1/metabolism , Autophagosomes/metabolism , Extracellular Vesicles/metabolism , Cholesterol/metabolism
6.
Front Psychol ; 14: 1234734, 2023.
Article in English | MEDLINE | ID: mdl-38187434

ABSTRACT

Objective: Assuming that the difference exist in the manifestation of psychological suffering among genders, the purpose of this review is to summarize the current knowledge on gender differences in vitiligo quality of life and psychological assessment. Methods: We searched in PubMed, Scopus, and Web of Science databases for original articles in English language. Results were screened according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA checklist). Results: The study yielded 107 results; 12 articles have been evaluated as eligible. Each eligible study has been screened and analyzed. The study's qualitative evaluation revealed that 8 papers were classifiable as satisfactory, 4 were classifiable as unsatisfactory. The agreement between the coders was high (% agreement = 84.6%; Cohen's kappa = 0.79). All considered researches (100%) were cross-sectional studies, based on self-report questionnaires. From our analysis, women with vitiligo had a higher risk to experience lower quality of life, and worse mental health in a wide range of psychopathology symptoms than men. A wide heterogeneity of tools is used to investigate the quality of life and psychological symptoms among these patients. Conclusion: Unfortunately, there are few explanatory models proposed in the literature to rationalize these findings. It will be important to investigate in further researches the specific influence of known risk factors for psychopathology in this population to better explore these phenomena.

7.
Int J Mol Sci ; 23(9)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35563024

ABSTRACT

Adrenergic receptors (AR) belong to the G protein-coupled receptor superfamily and regulate migration and proliferation in various cell types. The objective of this study was to evaluate whether ß-AR stimulation affects the antiproliferative action of α2-AR agonists on B16F10 cells and, if so, to determine the relative contribution of ß-AR subtypes. Using pharmacological approaches, evaluation of Ki-67 expression by flow cytometry and luciferase-based cAMP assay, we found that treatment with isoproterenol, a ß-AR agonist, increased cAMP levels in B16F10 melanoma cells without affecting cell proliferation. Propranolol inhibited the cAMP response to isoproterenol. In addition, stimulation of α2-ARs with agonists such as clonidine, a well-known antihypertensive drug, decreased cancer cell proliferation. This effect on cell proliferation was suppressed by treatment with isoproterenol. In turn, the suppressive effects of isoproterenol were abolished by the treatment with either ICI 118,551, a ß2-AR antagonist, or propranolol, suggesting that isoproterenol effects are mainly mediated by the ß2-AR stimulation. We conclude that the crosstalk between the ß2-AR and α2-AR signaling pathways regulates the proliferative activity of B16F10 cells and may therefore represent a therapeutic target for melanoma therapy.


Subject(s)
Melanoma , Receptors, Adrenergic, alpha-2 , Receptors, Adrenergic, beta-2 , Adrenergic beta-Agonists/pharmacology , Cell Line, Tumor , Cell Proliferation , Humans , Isoproterenol/pharmacology , Isoproterenol/therapeutic use , Melanoma/metabolism , Propranolol/pharmacology , Propranolol/therapeutic use , Receptors, Adrenergic, alpha-2/metabolism , Receptors, Adrenergic, beta/metabolism , Receptors, Adrenergic, beta-1 , Receptors, Adrenergic, beta-2/metabolism
8.
J Cancer ; 13(5): 1573-1587, 2022.
Article in English | MEDLINE | ID: mdl-35371312

ABSTRACT

Background: Gender differences in melanoma incidence, metastasis formation and disease progression are increasingly evident in epidemiological studies, with women showing significantly better survival than men. Among factors possibly underlying the disparities, sex hormones seem to play a key role. Nonetheless, functional mechanisms are still unclear, except for the antitumor ability of Estrogen Receptor (ER) ß, whose expression determination has often been suggested for melanoma prognosis. In this study, we aimed at evaluating the molecular mechanisms and functional effects associated with ERß signaling by using its agonist LY500307. Methods: We evaluated the antitumor effect of the specific synthetic ERß agonist LY500307 on some human melanoma cell lines, selected for different genetic background, expression levels of ERs and tumor progression. The expression of α and ß estrogen receptors was investigated taking advantage of The Cancer Genome Atlas database and confirmed on some selected melanoma cell lines. The biological effects of LY500307 were determined in vitro looking at melanoma cell proliferation, cell cycle profiles and migration demonstrating by western blot the involvement of some pathway specific markers. The LY500307-dependent induction of cell death was also analyzed by flow cytometry and western blot analysis of caspase 3 and poly adenosine diphosphate-ribose polymerase (PARP). Results: A significant decrease in the expression of both ERs, even more pronounced for ERα, has been found in patients with metastatic NRAS mutation. Treatment with LY500307 significantly reduced the proliferation of melanoma cells showing a cell cycle arrest at the G2/M boundary phase and promoting apoptosis with different sensitivities associated with disease stage and mutation. Indeed, the ERß agonist affects melanoma migration, inducing a reversion of the epithelial-mesenchymal transition, more evident in a low aggressive primary melanoma cell line. Conclusion: These results demonstrate the capability of LY500307 to reduce melanoma malignancy, counteracting cell viability and dissemination, overall suggesting a possible future use of LY500307 in personalized combined therapy.

9.
Dig Liver Dis ; 54(9): 1186-1194, 2022 09.
Article in English | MEDLINE | ID: mdl-35232677

ABSTRACT

BACKGROUND: It is still a matter of debate if neuromuscular alterations reflect a primary event in diverticular disease (DD). AIMS: This study aimed to assess colonic wall layers from both stenotic and non-stenotic complicated DD, bio-phenotypic alterations, inflammatory and oxidative status. METHODS: A systematic analysis of colonic specimens obtained from stenotic and non-stenotic DD specimens was conducted and compared with controls. Biological activity and qPCR analysis were performed on longitudinal and circular muscles. Western blot analysis was performed throughout colonic wall layers to quantify oxidative and inflammatory markers. RESULTS: A homogenous increase in oxidative stress was observed through all the layers, which were more sharpened in the longitudinal muscle for a loss in antioxidant defenses. In both stenotic and non-stenotic colon, the longitudinal muscle presented an impaired relaxation and a cellular phenotypic switch driven by transforming growth factor-ß with an increase in mRNA expression of collagen Iα and a decrease in myosin heavy chain. The circular muscle, as the mucosa, was less affected by molecular alterations. No peculiar increase in inflammatory markers was observed. CONCLUSION: A longitudinal colonic myopathy is present in DD, independently from the disease stage associated with an oxidative imbalance that could suggest new therapeutic strategies.


Subject(s)
Diverticular Diseases , Diverticulitis, Colonic , Colon , Humans , Muscle, Smooth , Oxidative Stress
10.
Cells ; 11(2)2022 01 13.
Article in English | MEDLINE | ID: mdl-35053377

ABSTRACT

Glioblastoma (GBM) is associated with a very dismal prognosis, and current therapeutic options still retain an overall unsatisfactorily efficacy in clinical practice. Therefore, novel therapeutic approaches and effective medications are highly needed. Since the development of new drugs is an extremely long, complex and expensive process, researchers and clinicians are increasingly considering drug repositioning/repurposing as a valid alternative to the standard research process. Drug repurposing is also under active investigation in GBM therapy, since a wide range of noncancer and cancer therapeutics have been proposed or investigated in clinical trials. Among these, a remarkable role is played by the antipsychotic drugs, thanks to some still partially unexplored, interesting features of these agents. Indeed, antipsychotic drugs have been described to interfere at variable incisiveness with most hallmarks of cancer. In this review, we analyze the effects of antipsychotics in oncology and how these drugs can interfere with the hallmarks of cancer in GBM. Overall, according to available evidence, mostly at the preclinical level, it is possible to speculate that repurposing of antipsychotics in GBM therapy might contribute to providing potentially effective and inexpensive therapies for patients with this disease.


Subject(s)
Antipsychotic Agents/therapeutic use , Drug Repositioning , Glioblastoma/drug therapy , Glioblastoma/genetics , Animals , Antipsychotic Agents/pharmacology , Cell Line, Tumor , Genomic Instability/drug effects , Humans , Neurogenesis
11.
Anticancer Res ; 42(2): 767-779, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35093875

ABSTRACT

BACKGROUND/AIM: About 40% of patients with diffuse large cell lymphoma (DLBCL) still have a poor prognosis. Additionally, DLBCL patients treated with doxorubicin are at risk of cardiac failure. Growing evidence suggests an antitumor and cardioprotective activity exerted by estrogen via its binding to estrogen receptor (ER) ß. The aim of this study was to evaluate the anticancer activity of the phytoestrogen silibinin, an ERß selective agonist, on DLBCL growth, and its potential cardioprotective effect. MATERIALS AND METHODS: DLBCL cell lines SUDHL-8, SUDHL-6, and RIVA were used. The anti-tumor activity of silibinin was also evaluated in vivo in NOD/SCID/IL2Rg-/- (NSG) xenografted mice. AC16 human ventricular cardiomyocytes were used to investigate the cardioprotective effects of silibinin. RESULTS: In vitro silibinin induced apoptosis and autophagy, and blocked tumor cell proliferation, also protecting AC16 cardiomyocytes from doxorubicin-induced toxicity. In vivo silibinin induced cell death and autophagy, and reduced tumor volume. CONCLUSION: Silibinin represents a promising therapeutic tool.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Estrogen Receptor beta/agonists , Lymphoma, Large B-Cell, Diffuse/drug therapy , Silybin/therapeutic use , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Doxorubicin/toxicity , Humans , Lymphoma, Large B-Cell, Diffuse/pathology , Mice , Myocytes, Cardiac/drug effects , Silybin/pharmacology , Xenograft Model Antitumor Assays
12.
Br J Pharmacol ; 179(7): 1371-1383, 2022 04.
Article in English | MEDLINE | ID: mdl-34766341

ABSTRACT

BACKGROUND AND PURPOSE: Recently, ß-adrenoceptor blockade has emerged as a potential strategy to inhibit melanoma growth. It remains to be ascertained whether ß-adrenoceptor stimulation by circulating catecholamines increases melanoma growth in mice. EXPERIMENTAL APPROACH: B16F10 melanoma-bearing mice were used to evaluate effects of adrenaline and specific adrenoceptor (AR) ligands on tumour volume. AR expression and effects of AR ligands on cell viability, production of mitochondrial reactive oxygen species (mROS), and proliferation activity in B16F10 cells, were determined by biochemical analyses. KEY RESULTS: Real-time polymerase chain reaction (qPCR) analyses revealed that B16F10 cells express α1B-, α2A-, α2B- and ß2-ARs. We found that treatment with the α- and ß-AR agonist adrenaline or with the synthetic catecholamine isoprenaline, which selectively stimulates ß-ARs, did not affect melanoma growth. Conversely, adrenaline reduced tumour growth in mice cotreated with propranolol, a ß1ß2-AR antagonist. Adrenaline had no effect in tumour-bearing ß1ß2-AR knockout mice, in which ß1- and ß2-ARs are lacking, but it reduced tumour growth when co-administered with propranolol suggesting that tumour ß2-ARs negatively regulate adrenaline antitumour activity. Additionally, we found that α1-AR stimulation with cirazoline yielded a decrease in B16F10 melanoma size. These effects on melanoma growth were paralleled by reduced cell viability and proliferation activity as well as increased mROS production in α1-AR-stimulated B16F10 cells. Decreased viability, proliferation and mitochondrial function in B16F10 cells also occurred after α2-AR stimulation by α2-AR agonist ST91. CONCLUSIONS AND IMPLICATIONS: In the B16F10 melanoma model, stimulation of α-AR subtypes yields in vivo and in vitro anticancer activity.


Subject(s)
Melanoma , Receptors, Adrenergic, alpha-1 , Animals , Catecholamines , Epinephrine/pharmacology , Ligands , Melanoma/metabolism , Mice , Mice, Knockout , Propranolol/pharmacology , Receptors, Adrenergic, alpha-1/metabolism
13.
Biomedicines ; 9(12)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34944758

ABSTRACT

In cancer cells, metabolic adaptations are often observed in terms of nutrient absorption, biosynthesis of macromolecules, and production of energy necessary to meet the needs of the tumor cell such as uncontrolled proliferation, dissemination, and acquisition of resistance to death processes induced by both unfavorable environmental conditions and therapeutic drugs. Many oncogenes and tumor suppressor genes have a significant effect on cellular metabolism, as there is a close relationship between the pathways activated by these genes and the various metabolic options. The metabolic adaptations observed in cancer cells not only promote their proliferation and invasion, but also their survival by inducing intrinsic and acquired resistance to various anticancer agents and to various forms of cell death, such as apoptosis, necroptosis, autophagy, and ferroptosis. In this review we analyze the main metabolic differences between cancer and non-cancer cells and how these can affect the various cell death pathways, effectively determining the susceptibility of cancer cells to therapy-induced death. Targeting the metabolic peculiarities of cancer could represent in the near future an innovative therapeutic strategy for the treatment of those tumors whose metabolic characteristics are known.

14.
J Exp Clin Cancer Res ; 40(1): 347, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34740374

ABSTRACT

BACKGROUND: Glioblastoma (GBM; grade IV glioma) is characterized by a very short overall survival time and extremely low 5-year survival rates. We intend to promote experimental and clinical research on rationale and scientifically driven drug repurposing. This may represent a safe and often inexpensive way to propose novel pharmacological approaches to GBM. Our precedent work describes the role of chlorpromazine (CPZ) in hindering malignant features of GBM. Here, we investigate in greater detail the molecular mechanisms at the basis of the effect of CPZ on GBM cells. METHODS: We employed proteomics platforms, i.e., activity-based protein profiling plus mass spectrometry, to identify potential cellular targets of the drug. Then, by means of established molecular and cellular biology techniques, we assessed the effects of this drug on GBM cell metabolic and survival pathways. RESULTS: The experimental output indicated as putative targets of CPZ several of factors implicated in endoplasmic reticulum (ER) stress, with consequent unfolded protein response (UPR). Such a perturbation culminated in a noticeable reactive oxygen species generation and intense autophagic response that resulted in cytotoxic and abortive effects for six GBM cell lines, three of which growing as neurospheres, while it appeared cytoprotective for the RPE-1 human non-cancer neuro-ectodermal cell line. CONCLUSIONS: This discrepancy could be central in explaining the lethal effects of the drug on GBM cells and the relatively scarce cytotoxicity toward normal tissues attributed to this compound. The data presented here offer support to the multicenter phase II clinical trial we have undertaken, which consists of the addition of CPZ to first-line treatment of GBM patients carrying a hypo- or un-methylated MGMT gene, i.e. those characterized by intrinsic resistance to temozolomide.


Subject(s)
Autophagy/genetics , Chlorpromazine/therapeutic use , Dopamine Antagonists/therapeutic use , Endoplasmic Reticulum Stress/drug effects , Glioblastoma/drug therapy , Unfolded Protein Response/drug effects , Chlorpromazine/pharmacology , Dopamine Antagonists/pharmacology , Glioblastoma/mortality , Humans , Survival Analysis
15.
Cancers (Basel) ; 13(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34830966

ABSTRACT

Mitochondria constitute an ever-reorganizing dynamic network that plays a key role in several fundamental cellular functions, including the regulation of metabolism, energy production, calcium homeostasis, production of reactive oxygen species, and programmed cell death. Each of these activities can be found to be impaired in cancer cells. It has been reported that mitochondrial dynamics are actively involved in both tumorigenesis and metabolic plasticity, allowing cancer cells to adapt to unfavorable environmental conditions and, thus, contributing to tumor progression. The mitochondrial dynamics include fusion, fragmentation, intracellular trafficking responsible for redistributing the organelle within the cell, biogenesis, and mitophagy. Although the mitochondrial dynamics are driven by the cytoskeleton-particularly by the microtubules and the microtubule-associated motor proteins dynein and kinesin-the molecular mechanisms regulating these complex processes are not yet fully understood. More recently, an exchange of mitochondria between stromal and cancer cells has also been described. The advantage of mitochondrial transfer in tumor cells results in benefits to cell survival, proliferation, and spreading. Therefore, understanding the molecular mechanisms that regulate mitochondrial trafficking can potentially be important for identifying new molecular targets in cancer therapy to interfere specifically with tumor dissemination processes.

16.
Int J Mol Sci ; 22(16)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34445662

ABSTRACT

Acute myocardial infarction (MI) is associated with an intense inflammatory response that is critical for cardiac repair but is also involved in the pathogenesis of adverse cardiac remodeling, i.e., the set of size, geometry, and structure changes that represent the structural substrate for the development of post-MI heart failure. Deciphering the pathophysiological mechanisms underlying cardiac repair after MI is, therefore, critical to favorably regulate cardiac wound repair and to prevent development of heart failure. Catecholamines and estrogen play an active role in regulating the inflammatory response in the infarcted area. For example, stress-induced catecholamines alter recruitment and trafficking of leukocytes to the heart. Additionally, estrogen affects rate of cardiac rupture during the acute phase of MI, as well as infarct size and survival in animal models of MI. In this review, we will summarize the role of ß-adrenergic receptors and estrogen in cardiac repair after infarction in preclinical studies.


Subject(s)
Estrogens/metabolism , Heart Failure/prevention & control , Myocardial Infarction/complications , Receptors, Adrenergic, beta/metabolism , Ventricular Remodeling , Animals , Heart Failure/etiology , Heart Failure/metabolism , Heart Failure/pathology , Humans
17.
Cancers (Basel) ; 13(13)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34209162

ABSTRACT

The interplay between cancer cells and the tumor microenvironment (TME) has a fundamental role in tumor progression and response to therapy. The plethora of components constituting the TME, such as stroma, fibroblasts, endothelial and immune cells, as well as macromolecules, e.g., hormones and cytokines, and epigenetic factors, such as microRNAs, can modulate the survival or death of cancer cells. Actually, the TME can stimulate the genetically regulated programs that the cell puts in place under stress: apoptosis or, of interest here, autophagy. However, the implication of autophagy in tumor growth appears still undefined. Autophagy mainly represents a cyto-protective mechanism that allows cell survival but, in certain circumstances, also leads to the blocking of cell cycle progression, possibly leading to cell death. Since significant sex/gender differences in the incidence, progression and response to cancer therapy have been widely described in the literature, in this review, we analyzed the roles played by key components of the TME, e.g., estrogen and microRNAs, on autophagy regulation from a sex/gender-based perspective. We focused our attention on four paradigmatic and different forms of cancers-colon cancer, melanoma, lymphoma, and lung cancer-concluding that sex-specific differences may exert a significant impact on TME/cancer interaction and, thus, tumor growth.

18.
J Exp Clin Cancer Res ; 40(1): 228, 2021 Jul 12.
Article in English | MEDLINE | ID: mdl-34253243

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor in adults, characterized by a poor prognosis mainly due to recurrence and therapeutic resistance. It has been widely demonstrated that glioblastoma stem-like cells (GSCs), a subpopulation of tumor cells endowed with stem-like properties is responsible for tumor maintenance and progression. Moreover, it has been demonstrated that GSCs contribute to GBM-associated neovascularization processes, through different mechanisms including the transdifferentiation into GSC-derived endothelial cells (GdECs). METHODS: In order to identify druggable cancer-related pathways in GBM, we assessed the effect of a selection of 349 compounds on both GSCs and GdECs and we selected elesclomol (STA-4783) as the most effective agent in inducing cell death on both GSC and GdEC lines tested. RESULTS: Elesclomol has been already described to be a potent oxidative stress inducer. In depth investigation of the molecular mechanisms underlying GSC and GdEC response to elesclomol, confirmed that this compound induces a strong increase in mitochondrial reactive oxygen species (ROS) in both GSCs and GdECs ultimately leading to a non-apoptotic copper-dependent cell death. Moreover, combined in vitro treatment with elesclomol and the alkylating agent temozolomide (TMZ) enhanced the cytotoxicity compared to TMZ alone. Finally, we used our experimental model of mouse brain xenografts to test the combination of elesclomol and TMZ and confirmed their efficacy in vivo. CONCLUSIONS: Our results support further evaluation of therapeutics targeting oxidative stress such as elesclomol with the aim of satisfying the high unmet medical need in the management of GBM.


Subject(s)
Brain Neoplasms/drug therapy , Cell Survival/drug effects , Glioblastoma/drug therapy , Hydrazines/therapeutic use , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Hydrazines/pharmacology , Male , Mice , Mice, Inbred NOD , Oxidative Stress , Reactive Oxygen Species
19.
Biomedicines ; 9(6)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073550

ABSTRACT

Glycyrrhiza glabra, commonly known as liquorice, contains several bioactive compounds such as flavonoids, sterols, triterpene, and saponins; among which, glycyrrhizic acid, an oleanane-type saponin, is the most abundant component in liquorice root. Diabetic peripheral neuropathy is one of the major complications of diabetes mellitus, leading to painful condition as neuropathic pain. The pathogenetic mechanism of diabetic peripheral neuropathy is very complex, and its understanding could lead to a more suitable therapeutic strategy. In this work, we analyzed the effects of ammonium glycyrrhizinate, a derivate salt of glycyrrhizic acid, on an in vitro system, neuroblastoma cells line SH-SY5Y, and we observed that ammonium glycyrrhizinate was able to prevent cytotoxic effect and mitochondrial fragmentation after high-glucose administration. In an in vivo experiment, we found that a short-repeated treatment with ammonium glycyrrhizinate was able to attenuate neuropathic hyperalgesia in streptozotocin-induced diabetic mice. In conclusion, our results showed that ammonium glycyrrhizinate could ameliorate diabetic peripheral neuropathy, counteracting both in vitro and in vivo effects induced by high glucose, and might represent a complementary medicine for the clinical management of diabetic peripheral neuropathy.

20.
Front Cell Dev Biol ; 9: 622908, 2021.
Article in English | MEDLINE | ID: mdl-33816471

ABSTRACT

Cholesterol is a lipid molecule that plays an essential role in a number of biological processes, both physiological and pathological. It is an essential structural constituent of cell membranes, and it is fundamental for biosynthesis, integrity, and functions of biological membranes, including membrane trafficking and signaling. Moreover, cholesterol is the major lipid component of lipid rafts, a sort of lipid-based structures that regulate the assembly and functioning of numerous cell signaling pathways, including those related to cancer, such as tumor cell growth, adhesion, migration, invasion, and apoptosis. Considering the importance of cholesterol metabolism, its homeostasis is strictly regulated at every stage: import, synthesis, export, metabolism, and storage. The alterations of this homeostatic balance are known to be associated with cardiovascular diseases and atherosclerosis, but mounting evidence also connects these behaviors to increased cancer risks. Although there is conflicting evidence on the role of cholesterol in cancer development, most of the studies consistently suggest that a dysregulation of cholesterol homeostasis could lead to cancer development. This review aims to discuss the current understanding of cholesterol homeostasis in normal and cancerous cells, summarizing key findings from recent preclinical and clinical studies that have investigated the role of major players in cholesterol regulation and the organization of lipid rafts, which could represent promising therapeutic targets.

SELECTION OF CITATIONS
SEARCH DETAIL
...